Волшебный квадрат альбрехта дюрера. Магические квадраты кхаджурахо, дюрера и золотая пропорция. «Год Сатурна» и символическое значение «львиного» гороскопа

Мне кажется, нам не уйти далеко,
Мне кажется, мы взаперти.
У каждого есть свой город и дом,
И мы пойманы в этой сети.

БГ, «Гость»

В тот момент, когда ты вошел
В этот мир форм,
Перед тобой поставили
Лестницу для побега.

Ты удивляешь меня - ты, беспокоящийся о том, что я обременяю тебя изучением непрактичных предметов. Данное сомнение свойственно не только посредственным умам - все люди испытывают трудность в понимании того, что путем изучения сих предметов, как с помощью инструментов, мы очищаем око души , мы возжигаем новый огонь в органе, который был скрыт и как бы приглушен тенями других наук. Это око, сохранение которого важнее десяти тысяч других глаз, потому что им, и только им, мы воспринимаем истину .

Платон, «Республика»

Изложенное в этой третьей Части - дань моему многолетнему увлечению древними объектами Знания, которые называют магическими квадратами.

Начну, как принято, с истории вопроса.

Магический квадрат 3 х 3 клетки использовал в своей работе великий суфийский ученый и алхимик Джабир Ибн Хайян. В частности, он использовал квадрат как схему, приводящую в баланс разные элементы и химические вещества. В квадрате Джабира, правда, в соответствии с арабской системой абджад вместо чисел были буквы.


Магический квадрат Джабира

(Дервишеские талисманы, которые нередко можно встретить в Азии, также являются магическими квадратами разного типа, в которых вместо цифр используются арабские буквы. Если они вам попадутся где-нибудь на восточных развалах - вспомните Джабира:).

Ибн Хайян, однако, был далеко не первым, кто использовал магический квадрат - как известно, знание о нем существовало за несколько тысяч лет до нашей эры в Древнем Китае. Китайцы называли магический квадрат Ло-Шу , поскольку, согласно легенде, этот паттерн первопредок Фу-Си увидел на панцире мистической черепахи, появившейся из реки Ло.


Ло-Шу

Магический квадрат включил в свою знаменитую гравюру иезуит и знаток Востока Атанасиус Кирхер, о котором я писала . На гравюре, ставшей обложкой книги Кирхера «Арифмология» («Наука о Числах и Пропорциях»), ангел высоко в небесах держит магический квадрат 3 х 3 с надписью Numero , что на латыни означает «число» или «считать».

В своей книге «Суфии» Идрис Шах приводит магический квадрат в таком виде:

Там же содержится описание математических свойств этой универсальной диаграммы. Они всем известны - сумма цифр квадрата по всем диагоналям, а также горизонтальным и вертикальным рядам равна 15.

Мистическая сущность магического квадрата легче усваивается, если записать его в следующем виде, приняв центральную цифру пять за ноль, точку отсчета:

-1 +4 -3

+3 -4 +1

Подобное представление передает идею системы, все элементы которой, отличаясь друг от друга свойствами, тем не менее в целом находятся в состоянии динамического равновесия (гомеостаза). Что еще более важно, этот символ передает идею Единства - или как сказал бы суфий Джабир, таухид - потому что у него есть единый центр - точка 0. (Чуть ниже мы убедимся, что это может быть и совсем по-другому).

Магический квадрат 3 х 3, которым пользовались древние, есть всего лишь начало, семя огромного семейства магических квадратов. Более сложные магические квадраты можно получить из первоначального семени, наращивая внешние ряды - вот таким образом:

Магический квадрат порядка 5 х 5

-7 +12 -8 -6 +9

-5 -1 +4 -3 +5

+10 -2 0 +2 -10

+11 +3 -4 +1 -11

-9 -12 +8 +6 +7

Магический квадрат порядка 7 х 7

+17 +14 +16 +18 -22 -24 -19

-23 -7 +12 -8 -6 +9 +23

-21 -5 -1 +4 -3 +5 +21

-20 +10 -2 0 +2 -10 +20

+15 +11 +3 -4 +1 -11 -15

+13 -9 -12 +8 +6 +7 -13

+19 -14 -16 -18 +22 +24 -17

И так далее - порядок квадрата можно увеличивать до бесконечности. (Если кому-то захочется продолжить построение магических квадратов, можно использовать вот эту простую программу - идите до конца страницы в раздел Make Squares и следуйте инструкциям).

Но вернемся к основному вопросу темы: почему люди Знания считали магический квадрат таким важным символом? Возможно, в нем они видели принцип мироустройства, а также принцип устройства любой устойчивой системы (включая человека), выраженный через числовые отношения.

Числа в магическом квадрате как бы представляют разные части Вселенной. Каждый объект в космосе имеет свое, присущее только ему, число. Можно принять Галактический Центр за нулевую точку, начало координат. Все другие части, выраженные числами, будут математически связаны с единым центром - точкой 0, от которой идет отсчет, и сбалансированы относительного этого центра. Иначе говоря, если где-то во Вселенной есть объект, свойства которого можно описать числом плюс 888888, то непременно - для баланса - где-то должен существовать и объект числом минус 888888. Если существуют звезды, активно излучающие энергию, то должны существовать и черные дыры, так же активно ее вбирающие.

Или, как сказано в герметической книге Кибалион :

«Все является частью дуальности, и все обладает полярностью. Каждая вещь имеет противоположную ей пару. Противоположности являются равными по природе, но обладают различными знаками. Крайности притягивают друг друга, поэтому всякая истина является лишь одной стороной истины, и все парадоксы имеют примиряющее их решение».

Примиряющее решение для всех противоположных чисел магического квадрата - точка ноль. Она и есть таинственная середина парадокса - никогда не видимая, всегда присутствующая.

Замечательной чертой всех квадратов нечетных порядков будет и свойство подобия (фрактальности): меньшие могут вкладываться в бОльшие, как матрешки, при этом не меняя своих свойств - что мы и видим в вышеприведенных примерах.

Сумма цифр в каждом из вложенных друг в друга, как матрешки, квадратов будет равна нулю. Это означает (на языке чисел) следующее: каждый из квадратов находится в динамическом равновесии и представляет из себя самодостаточную целостность, что не мешает ему при этом быть гармоничной частью чего-то Большего и в точности похожим на это Большее. Сумма чисел по диагонали, вертикали и горизонтали любого квадрата также всегда будет равна нулю, что позволяет соблюдать принцип Единства и принцип динамического равновесия.

Итак, главная черта вышеприведенных квадратов, важность которой трудно преувеличить - свойство единства.

Существует, однако, другое семейство магических квадратов, в которых свойство единства отсутствует .

За пару столетий до Атанасиуса Кирхера в Европе магическими квадратами занимались как минимум двое посвященных - Корнелиус Агриппа и Альбрехт Дюрер. Загадочная гравюра Дюрера «Меланхолия I» была оставлена им как ключ к некоторым Божественным мерам и весам. Дюрер был одним из первых в средневековой Европе, кто изучал пропорцию золотого сечения, он также владел знаниями других священных мер, о чем свидетельствует странный неправильной формы многогранник, изображенный в «Меланхолии». Среди прочих предметов там им был изображен и магический квадрат. Он был составлен таким образом, что в его нижней строке даже был отражен год создания гравюры - 1514.

«Меланхолия» сильно заинтересовала и озадачила меня во время посещения дома-музея Дюрера в Нюрнберге. Магический квадрат - центральный объект «Мелахолии» и, возможно, главный плод исследований художника, принципиально отличался от квадрата Джабира Ибн Хайяна и Корнелиуса Агриппы (и Ло-Шу). Далее мы увидим, почему.

Магический квадрат Дюрера, изображенный на «Меланхолии», имел порядок 4 х 4, и выглядел вот таким образом:

Сумма чисел квадрата на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате, в квадрате из угловых клеток, в квадратах, построенных «ходом коня» и т.д. В смысле передачи идеи динамического равновесия и баланса этот квадрат не только не уступает, но даже превосходит квадрат Ло-Шу. Так в чем же разница?

Разница в том, что у этого квадрата нет единого центра . Такой тип квадрата называется четным: он не имеет цифры, которую можно было бы принять за начало координат и относительно которой можно было бы уравновесить все остальные части квадрата! Он на языке чисел иллюстрирует идею отсутствия Единства, идею отделенности, множественности . Все четыре части квадрата Дюрера являются сбалансированными внутри себя и замкнутыми в себе, они как бы «не нуждаются» в едином центре. Если мы соединим два квадрата между собой, то получим схему, по принципу очень напоминающую функционирование человеческого мозга, где два полушария - по сути дела представляющие из себя два самостоятельных мозга - соединяются друг с другом с помощью посредника - мозолистого тела.

16 3 2 13 16 3 2 13

5 10 11 8 5 10 11 8

9 6 7 12 9 6 7 12

4 15 14 1 4 15 14 1

Глядя на мир, существо с такой структурой сознания будет воспринимать его как состоящий из отдельных, не связанных между собой объектов. Оно будет не в состоянии воспринимать Единство, поскольку его сознание не имеет связи с центром, нулевой точкой. Слово майя , означающее «иллюзорный мир», изначально на санскрите означало «сила разделения», «разделенный ум».

16 3 2 13 16 3 2 13 16 3 2 13 16 3 2 13

5 10 11 8 5 10 11 8 5 10 11 8 5 10 11 8

9 6 7 12 9 6 7 12 9 6 7 12 9 6 7 12

4 15 14 1 4 15 14 1 4 15 14 1 4 15 14 1

16 3 2 13 16 3 2 13 16 3 2 13 16 3 2 13

5 10 11 8 5 10 11 8 5 10 11 8 5 10 11 8

9 6 7 12 9 6 7 12 9 6 7 12 9 6 7 12

4 15 14 1 4 15 14 1 4 15 14 1 4 15 14 1

В какую бы сторону по этой сетке мы ни двигались, мы нашли бы те же обособленные части с суммой цифр 34. Обособленные квадраты тем не менее, могут понимать друг друга, «сообщаясь» на всеобщем языке Сети, «языке 34», через «посредников» - такие же квадраты с суммой цифр 34, образующиеся на стыке двух соседних (они выделены подчеркиванием). Однако посредники не то же самое, что уравновешивающая сила (примиряющее решение для парадокса) , какой является ноль в середине магических квадратов нечетных порядков.

Такую сеть разделенных и обособленных сознаний невозможно создать, используя в качестве основы магические квадраты, у которых есть единый центр.

Если бы какой-то злой волшебник захотел придумать сеть сознания, которая создавала бы иллюзию настоящего мира - иллюзию настолько правдоподобную, что ее трудно было бы отличить от реальности, но которая все же оставалась бы нереальной, - он вполне мог бы использовать подобную идею. Конечно, коды его сети - Матрицы - были бы на порядки сложнее, но базовый принцип оставался бы похожим: возможность коммуникации между частями Матрицы, но отсутствие Единого центра.

Может ли быть, что, помещая песочные часы рядом со своим магическим квадратом, Дюрер оставил намек на его связь с преходящим и иллюзорным миром, в котором мы оказались? Песочные часы часто встречались в гравюрах Дюрера как символ бренности жизни. Возможно, он думал о всех нас, попавших в сети нереального мира, о людях, «по ком звонит колокол» над квадратом?

В отличие от Дюрера, поместившего квадрат Матрицы под колоколом и рядом с песочными часами, Атанасиус Кирхер отдал свой магический квадрат 3 х 3 в руки ангела в небесной выси, вполне ясно давая понять, на каких числовых соотношениях основан мир другой, истинной Реальности....

Работы Дюрера отражают его причастие к сакральному Знанию. На нескольких гравюрах, в довольно неожиданных местах, художник поместил изображение чертополоха, которое искусствоведы объясняют причинами самыми нелепыми, в то время как истинной причиной может являться указание на принадлежность автора к одному из братств Традиции. Братство Чертополоха было одним из средневековых тайных обществ, корни которого идут от шотландских тамплиеров. Позднее члены ордена носили плащи зеленого цвета и знак в виде восьмиугольной звезды.

...Я стою на пороге бывшего дома Альбрехта Дюрера и смотрю на угол здания наискосок, где скульптурный Архангел Михаил попирает ногами и поражает копьем крылатого Змея. Уже собираясь уходить, я бросаю взгляд на увеличенную копию знаменитого автопортрета хозяина дома, висящую на входе, и застываю. Кто же ты, Господин Меланхолик? Внимательный, серьезный взгляд, лицо, на котором почему-то трудно представить улыбку. «Меланхолия» - тоже автопортрет, квинтэссенция Знания художника. Ключ к какой тайне ты хотел передать нам, потомкам, оставив свой магический символ?

«Ты узнаешь позже. Но важно не это».

«Что же важно?»

«Лестница с семью ступенями. Она ведет за пределы заколдованной сети квадрата, к свободе от мира меланхолии» .

«Как найти эту лестницу, Господин Меланхолик?»

«Ты не нащупаешь лестницу, живя разумом, потому что он создан двойственным. Первая ступень лестницы начинается в сердце. Полезно размышлять над тем, почему у человека два мозга, но одно сердце».

Хотя наше обычное сознание поймано в плен Сетью мира иллюзий, где царствует враждебность, потому что все кажется разделенным, изолированным одно от другого, в нас, согласно Учителям Традиции, все же есть нечто - орган, названный Платоном «оком», очищая которое огнем Знания, мы прозреваем в мир Реальности. Может быть, Платон имел в виду то же самое око, о котором говорится в Евангелии от Матфея (6:22): «Светильник для тела есть око. Если око твое будет чисто, то все тело твое будет светло» ?

Каждый из нас неразрывно связан с миром Реальности через орган, который Традиция называет сердцем (имея в виду не физическое сердце, но средоточие Единства в нас - сердцевина живого существа). Наше сердце - часть необъятной сети Творения, в котором все - от песчинки до галактик - связано со всем через Единый центр, нулевую точку.

Продолжение в и

Магический квадрат Альбрехта Дюрера. Магический квадрат 4?4, изображённый на гравюре Альбрехта Дюрера«Меланхолия I», считается самым ранним в европейском искусстве. Два средних числа в нижнем ряду указывают дату создания картины (1514). Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2?2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12).

Слайд 13 из презентации «Квадрат в жизни» . Размер архива с презентацией 388 КБ.

Геометрия 8 класс

краткое содержание других презентаций

«Определение правильных многоугольников» - Решение задач. Любой правильный многоугольник является выпуклым. Устная работа. Построенная фигура. Паркеты из правильных многоугольников. Формула для вычисления угла правильного n-угольника. Чему равна сумма внешних углов правильного n- угольника. Чему равен каждый из углов правильного многоугольника. Творческое задание. Многоугольники разных видов. Выпуклый многоугольник. Задачи урока. Плоскость без просветов можно покрыть правильными треугольниками.

«Виды прямоугольников» - Диагональ. Перпендикуляры. Прямоугольник. Квадрат является параллелограммом. Найдите все неизвестные угла квадрата. Упражнения. Упражнения по планиметрии на готовых чертежах. Упражнения по планиметрии. Обратное утверждение. Признак. Параллелограмм. Сторона ромба. Признак ромба. Особое свойство прямоугольника. Параллелограмм АВСD. Меньшая сторона прямоугольника. Высота. Свойство ромба. Докажите. Найдите периметр квадрата.

«Построение касательной к окружности» - Окружность и прямая имеют одну общую точку. Общие точки. Хорда. Касательная к окружности. Повторение. Окружность и прямая. Диаметр. Теорема об отрезках касательных. Взаимное расположение прямой и окружности. Решение. Окружность.

«Вычисление площади многоугольника» - Многоугольник составлен из нескольких многоугольников. Тест. Площадь многоугольника. Работа в тетрадях. АВСD-параллелограмм. Свойства площадей. Устное решение задач. Как вы понимаете. Какие основные свойства площадей вы знаете. Площадь квадрата равна квадрату его стороны. Середины сторон ромба. В прямоугольнике диагонали равны. Цели урока. Единицы измерения площадей. Работа по готовым чертежам.

«Задачи на признаки подобия треугольников» - Определение высоты предмета по луже. Индивидуальная карта. Решение задач по готовым чертежам. Измерение высоты больших объектов. Подобие треугольников. Тень от палки. Определение высоты предмета по зеркалу. Решение практических задач. Способ Фалеса. Назвать подобные треугольники. Определение высоты пирамиды. Самостоятельная работа. Определение высоты предмета. Гимнастика для глаз. Девиз урока.

«Понятие вектора» - Длина вектора. Векторы. Направление векторов. Равенство векторов. Коллинеарные векторы. Отметьте на чертеже. Равнобедренная трапеция. Историческая справка. Два ненулевых вектора. Задача. Два ненулевых вектора коллинеарны. Нулевой вектор. Геометрическое понятие вектора. Что такое вектор. Откладывание вектора от данной точки. Параллелограмм.

Магический квадрат, воспроизведённый немецким художником Альбрехтом Дюрером на гравюре “Меланхолия”, известен всем исследователям магических квадратов.

Квадрат в привычном виде (рис. 6.1):

Рисунок 6.1

Интересно, что два средних числа в последней строке квадрата (они выделены) составляют год создания гравюры - 1514.

Считают, что этот квадрат, так очаровавший Альбрехта Дюрера, пришёл в Западную Европу из Индии в начале XVI века. В Индии этот квадрат был известен в I веке нашей эры.

Предполагают, что магические квадраты были придуманы китайцами, так как самое раннее упоминание о них встречается в китайской рукописи, написанной за 4000-5000 лет до нашей эры. Вот какой древний возраст у магических квадратов!

Рассмотрим теперь все свойства этого удивительного квадрата. Но делать это мы будем на другом квадрате, в группу которого входит квадрат Дюрера.

Это означает, что квадрат Дюрера получается из того квадрата, который мы будем сейчас рассматривать, одним из семи основных преобразований магических квадратов, а именно поворотом на 180 градусов. Все 8 квадратов, образующих данную группу, обладают свойствами, которые будут сейчас перечислены, только в свойстве 8 для некоторых квадратов слово “строка” заменится на слово “столбец” и наоборот.

Основной квадрат данной группы вы видите на рис. 6.2.

Рисунок 6.2

Свойства данного квадрата:.

Свойство 1. Этот квадрат ассоциативен, то есть любая пара чисел, симметрично расположенных относительно центра квадрата, даёт в сумме 17=1+n2.

Свойство 2. Сумма чисел, расположенных в угловых ячейках квадрата, равна магической константе квадрата - 34 .

Свойство 3. Сумма чисел в каждом угловом квадрате 2х2, а также в центральном квадрате 2х2 равна магической константе квадрата.

Свойство 4. Магической константе квадрата равна сумма чисел на противоположных сторонах двух центральных прямоугольников 2х4, а именно: 14+15+2+3=34, 12+8+9+5=34.

Свойство 5 . Магической константе квадрата равна сумма чисел в ячейках, отмечаемых ходом шахматного коня, а именно: 1+6+16+11=34, 14+9+3+8, 15+5+2+12=34 и 4+10+13+7=34.

Свойство 6 . Магической константе квадрата равна сумма чисел в соответствующих диагоналях угловых квадратов 2х2, примыкающих к противоположным вершинам квадрата.

Например, в угловых квадратах 2х2, которые выделены на рис. 4, сумма чисел в первой паре соответствующих диагоналей: 1+7+10+16=34 (это и понятно, так как эти числа расположены на главной диагонали самого квадрата). Сумма чисел в другой паре соответствующих диагоналей: 14+12+5+3=34.

Свойство 7. Магической константе квадрата равна сумма чисел в ячейках, отмечаемых ходом, подобным ходу шахматного коня, но с удлинённой буквой Г. Показываю эти числа: 1+9+8+16=34, 4+12+5+13=34, 1+2+15+16=34, 4+3+14+13=34.

Свойство 8 . В каждой строке квадрата есть пара рядом стоящих чисел, сумма которых равна 15, и ещё пара тоже радом стоящих чисел, сумма которых равна 19. В каждом столбце квадрата есть пара рядом стоящих чисел, сумма которых равна 13, и ещё пара тоже рядом стоящих чисел, сумма которых равна 21. мозг клетка квадрат судоку

Свойство 9 . Суммы квадратов чисел в двух крайних строках равны между собой. То же можно сказать о суммах квадратов чисел в двух средних строках. Смотрите:

12 + 142 + 152 + 42 = 132 + 22 + 32 + 162 = 438

122 + 72 + 62 + 92 = 82 + 112 + 102 + 52 = 310

Аналогичным свойством обладают числа в столбцах квадрата.

Свойство 10. Если в рассматриваемый квадрат вписать квадрат с вершинами в серединах сторон (рис. 6.3), то:

  • · сумма чисел, расположенных вдоль одной пары противоположных сторон вписанного квадрата, равна сумме чисел, расположенных вдоль другой пары противоположных сторон, и каждая из этих сумм равна магической константе квадрата;
  • · равны между собой суммы квадратов и суммы кубов указанных чисел:
    • 122 + 142 + 32 + 52 = 152 + 92 + 82 + 22 = 374
    • 123 + 143 + 33 + 53 = 153 + 93 + 83 + 23 = 4624

Рисунок 6.3

Вот такими свойствами обладает магический квадрат с рис. 5.2

Следует отметить, что в ассоциативном квадрате, каковым является рассматриваемый квадрат, можно выполнять ещё такие преобразования, как перестановка симметричных строк и/или столбцов. Например, на рис. 5.4 изображён квадрат, полученный из квадрата с рис. 4 перестановкой двух средних столбцов.

Рисунок 6.4

В полученных такими преобразованиями новых ассоциативных квадратах выполняются не все перечисленные выше свойства, но многие свойства имеют место. Читателям предлагается проверить выполнение свойств в квадрате с рис. 6.4.


МАГИЧЕСКИЕ КВАДРАТЫ

Родиной магических квадратов считают Китай. В Китае существует учение Фэн-шуй, согласно которому цвет, форма и физическое расположение каждого элемента в пространстве влияет на поток Ци, замедляя его, перенаправляя его или ускоряя его, что напрямую влияет на уровень энергии жителей. Для познания тайн мира боги послали императору Ю (Yu) древнейший символ, квадрат Ло Шу (Ло – река).

МАГИЧЕСКИЙ КВАДРАТ ЛО ШУ

Легенда гласит, что около четырех тысяч лет назад из бурных вод реки Ло вышла большая черепаха Шу. Люди, приносящие жертвы реке, увидели черепаху и сразу признали ее божеством. Соображения древних мудрецов показались императору Ю настолько резонными, что он приказал увековечить изображение черепахи на бумаге и скрепил его своей императорской печатью. А иначе как бы мы об этом событии узнали?

Эта черепаха на самом деле была особенной, потому что на ее панцире был нанесен странный узор из точек. Точки были нанесены упорядоченно, это привело древних философов к мысли о том, что квадрат с числами на панцире черепахи служит моделью пространства – картой мира, составленной мифическим основателем китайской цивилизации Хуан-ди. В самом деле, сумма чисел по столбцам, строкам, обеим диагоналям квадрата одинакова M=15 и равна числу дней в каждом из 24-х циклов китайского солнечного года.

Четные и нечетные номера чередуются: причем 4 четных числа (пишутся снизу вверх по убыванию) находятся в четырех углах, а 5 нечетных чисел (пишутся снизу вверх по возрастанию) образуют крест в центре площади. Пять элементов креста отражают землю, огонь, металл, воду и лес. Сумма любых разделенных центром двух чисел равна числу Хо Ти, т.е. десяти.

Четные числа (символы Земли) Ло Шу были нанесены на теле черепахи в виде черных точек, или Инь символов, а нечетные числа (символы Неба) – в виде белых точек, или Ян символов. Земля 1 (или вода) находится снизу, огонь 9 (или небо) – сверху. Не исключено, что современное изображение цифры 5, размещенной в центре композиции, обязано китайскому символу двуединственности Ян и Инь.

МАГИЧЕСКИЙ КВАДРАТ ИЗ КХАДЖУРАХО


Восточная комната

Магия Джозефа Редьярда Киплинга, создавшего образы Маугли, Багиры, Балу, Шер-Хана и, конечно, Табаки, началась накануне двадцатого века. За полстолетия до этого, в феврале 1838, года молодой британский офицер бенгальских инженерных войск Т.С. Берт, заинтересованный разговором слуг, несших его паланкин, отклонился от маршрута и наткнулся на древние храмы в джунглях Индии.

На ступенях храма Вишванатха офицер нашел надпись, свидетельствующую о древности сооружений. Спустя короткое время энергичный генерал-майор А. Каннингем начертил подробные планы Кхаджурахо. Были начаты раскопки, увенчавшиеся сенсационным открытием 22 храмов. Возвели храмы махараджи их династии Чанделов. После распада их царства джунгли поглотили постройки на тысячу лет. Найденный среди изображений обнаженных богов и богинь квадрат четвертого порядка поражал воображение.

Мало того, что у этого квадрата суммы по строкам, столбцам и диагоналям совпадали и равнялись 34. Они совпадали также по ломанным диагоналям, образующимся при сворачивании квадрата в тор, причем в обоих направлениях. За подобное колдовство цифр такие квадраты называют «дьявольскими» (или «пандиагональными», или «насик»).

Безусловно, это свидетельствовало о необычных математических способностях их создателей, превосходящих колонизаторов. Что неизбежно почувствовали люди в белых пробковых шлемах.

МАГИЧЕСКИЙ КВАДРАТ ДЮРЕРА

Знаменитый немецкий художник начала XVI века Альбрехт Дюрер составил первый в европейском искусстве магический квадрат 4х4. Сумма чисел в любой строке, столбце, диагонали, а также, что удивительно, в каждой четверти (даже в центральном квадрате) и даже сумма угловых чисел равна 34. Два средних числа в нижнем ряду указывают дату создания картины (1514). В средних квадратах первого столбика внесены исправления – цифры деформированы.

В картине с оккультной крылатой мышью Сатурном магический квадрат сложен крылатым разумом Юпитером, которые друг другу противостоят. Квадрат симметричен, так как сумма любых двух входящих в него чисел, расположенных симметрично относительно его центра, равна 17. Если сложить четыре числа, полученные ходом шахматного коня – будет 34. Воистину этот квадрат своей безупречной упорядоченностью отражает меланхолию, охватившую художника.

Утренний сон.

Европейцев с удивительными числовыми квадратами познакомил византийский писатель и языковед Мосхопулос. Его работа была специальным сочинением на эту тему и содержала примеры магических квадратов автора.

СИСТЕМАТИЗАЦИЯ МАГИЧЕСКИХ КВАДРАТОВ

В середине XVI в. в Европе появились сочинения, в которых в качестве объектов математического исследования предстали магические квадраты. Затем последовало множество других работ, в частности таких известных математиков, основоположников современной науки, как Штифель, Баше, Паскаль, Ферма, Бесси, Эйлер, Гаусс.

Магический , или волшебный квадрат – это квадратная таблица, заполненная n 2 числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Определение условное, поскольку древние придавали также значение, например, цвету.

Нормальным называется магический квадрат, заполненный целыми числами от 1 до n 2 . Нормальные магические квадраты существуют для всех порядков, за исключением n = 2 , хотя случай n = 1 тривиален – квадрат состоит из одного числа.

Сумма чисел в каждой строке, столбце и на диагоналях называется магической константой M. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой

M = n (n 2 + 1) /2

Первые значения магических констант приведены в таблице

Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим . Магический квадрат называется ассоциативным или симметричным , если сумма любых двух чисел, расположенных симметрично относительно центра квадрата, равна n 2 + 1 .

Существует только один нормальный квадрат третьего порядка. Его знали многие народы. Расположение чисел в квадрате Ло Шу сходно с символическими обозначениями духов в каббале и знаками индейской астрологии.

Известен также как квадрат Сатурна. Некоторые тайные общества в Средние века видели в нем "каббалу девяти палат". Несомненно, оттенок за­претного волшебства много значил для сбережения его изображений.

Он был важен в средневековой ну­мерологии, часто использовался как амулет или средство для гадания. Каждая ячейка его отвечает мистической букве или иному символу. Прочитанные вме­сте вдоль определенной линии, эти знаки передавали ок­культные сообщения. Цифры, составляющие дату рождения, расставлялись в ячейках квадрата и затем расшифровывались в зависимости от значения и местоположения цифр.

Среди пандиагональных, как их именуют еще, дьявольских магических квадратов выделяют симметричные – идеальные. Дьявольский квадрат остается дьявольским, если производить его поворот, отражение, перестановку строки сверху вниз и наоборот, зачеркивание столбца справа или слева с приписыванием его с противоположной стороне. Всего выделяют пять преобразований, схема последнего приведена на рисунке

Существует 48 дьявольских квадратов 4×4 с точностью до поворотов и отражений. Если принять во внимание еще и симметрию относительно торических параллельных переносов, то остается только три существенно различных дьявольских квадрата 4×4:

Клод Ф. Брэгдон, известный американский архитектор, обнаружил, что, соединив одну за другой клетки только с четными или только с нечетными числами магических квадратов ломаной, мы в большинстве случаев получим изящный узор. Придуманный им узор для вентиляционной решетки в потолке Торговой палаты в Рочестере (штат Нью-Йорк), где он жил, построен из магической ломаной талисмана Ло-Шу. Брэгдон использовал «магические линии» как образцы рисунков для тканей, книжных обложек, архитектурных украшений и декоративных заставок.

Если из одинаковых дьявольских квадратов выложить мозаику (каждый квадрат должен вплотную примыкать к своим соседям), то получится нечто вроде паркета, в котором числа, стоящие в любой группе клеток 4х4, будут образовывать дьявольский квадрат. Числа в четырех клетках, следующих последовательно одна за другой, как бы они ни были расположены – по вертикали, по горизонтали или по диагонали, – в сумме всегда дают постоянную квадрата. Современные математики называют подобные квадраты «совершенными».

ЛАТИНСКИЙ КВАДРАТ

Латинский квадрат – разновидность неправильных математических квадратов, заполненная n различными символами таким образом, чтобы в каждой строке и в каждом столбце встречались все n символов (каждый по одному разу).

Латинские квадраты существуют для любого n. Любой латинский квадрат является таблицей умножения (таблицей Кэли) квазигруппы. Название «латинский квадрат» берет начало от Леонарда Эйлера, который использовал латинские буквы вместо цифр в таблице.

Два латинских квадрата называются ортогональными , если различны все упорядоченные пары символов (a,b), где a – символ в некоторой клетке первого латинского квадрата, а b – символ в той же клетке второго латинского квадрата.

Ортогональные латинские квадраты существуют для любого порядка, кроме 2 и 6. Для n являющихся степенью простого числа есть набор n–1 попарно ортогональных латинских квадратов. Если в каждой диагонали латинского квадрата все элементы различны, такой латинский квадрат называется диагональным . Пары ортогональных диагональных латинских квадратов существуют для всех порядков, кроме 2, 3 и 6. Латинский квадрат часто встречается в задачах составления расписания, поскольку в строках и столбцах числа не повторяются.

Квадрат из пар элементов двух ортогональных латинских квадратов называется греко-латинский квадратом . Подобные квадраты часто используются для построения магических квадратов и в усложненных задачах о составлении расписания.

Занимаясь греко-латинскими квадратами Эйлер доказал, что квадратов второго порядка не существует, зато были найдены квадраты 3, 4, и 5 порядков. Ни одного квадрата 6 порядка он не нашел. Им была высказана гипотеза, что не существует квадратов четных порядков, не делящееся на 4 (то есть 6, 10, 14 и т. д.). В 1901 Гастон Терри перебором подтвердил гипотезу для 6 порядка. Но в 1959 году гипотеза была опровергнута Э. Т. Паркером, Р. К. Боусом и С. С. Шрикхердом, обнаружившими греко-латинский квадрат порядка 10.

ПОЛИМИНО АРТУРА КЛАРКА


Полимино – по сложности его, безусловно, относится к категории труднейших математических квадратов. Вот как о нем пишет писатель-фантаст А. Кларк – ниже размещен отрывок из книги "Земная Империя". Очевидно, что Кларк, проживая на своем острове, он жил на Цейлоне – и его философия отрыва от социума интересна сама по себе, увлекся развлечением, которому учит бабушка мальчика, и передал его нам. Предпочтем это живое описание имеющимся систематизациям, которые передают, возможно, суть, но не дух игры.

– Ты уже достаточно большой мальчик, Дункан, и сумеешь понять эту игру… впрочем, она куда больше, чем игра. Вопреки словам бабушки, игра не впечатлила Дункана. Ну что можно сделать из пяти белых пластмассовых квадратиков?

– Прежде всего,– продолжала бабушка,– тебе нужно проверить, сколько различных узоров ты сумеешь сложить из квадратиков.

– А они при этом должны лежать на столе? – спросил Дункан.

– Да, они должны лежать, соприкасаясь. Перекрывать один квадратик другим нельзя.

Дункан принялся раскладывать квадратики.

– Ну, я могу выложить их все в прямую линию,– начал он.– Вот так… А потом могу переложить две штуки и получить букву L… А если я возьмусь за другой край, то получится буква U…

Мальчик быстро составил полдюжины сочетаний, потом еще и вдруг обнаружил, что они повторяют уже имеющиеся.

– Может, я тупой, но это все.

Дункан упустил самую простую из фигур – крест, для создания которой достаточно было выложить четыре квадратика по сторонам пятого, центрального.

– Большинство людей начинают как раз с креста,– улыбнулась бабушка.– По-моему, ты поторопился объявить себя тупым. Лучше подумай: могут ли быть еще какие-нибудь фигуры?

Сосредоточенно двигая квадратики, Дункан нашел еще три фигуры, после чего прекратил поиски.

– Теперь уже точно все, – уверенно заявил он.

– А что ты скажешь про такую фигуру?

Слегка передвинув квадратики, бабушка сложила из них подобие горбатой буквы F.

– И вот еще одна.

Дункан чувствовал себя последним идиотом, и бабушкины слова легли бальзамом на его смущенную душу:

– Ты просто молодец. Подумаешь, упустил всего две фигуры. А общее число фигур равно двенадцати. Не больше и не меньше. Теперь ты знаешь их все. Ищи хоть целую вечность – больше не найдешь ни одной.

Бабушка смела в угол пять белых квадратиков и выложила на стол дюжину ярких разноцветных пластиковых кусочков. Это были те самые двенадцать фигур, но уже в готовом виде, и каждая состояла из пяти квадратиков. Дункан уже был готов согласиться, что никаких других фигур действительно не существует.

Но раз бабушка выложила эти разноцветные полоски, значит, игра продолжается, и Дункана ждал еще один сюрприз.

– А теперь, Дункан, слушай внимательно. Эти фигуры называются «пентамино». Название произошло от греческого слова «пента», что значит «пять». Все фигуры равны по площади, поскольку каждая состоит из пяти одинаковых квадратиков. Фигур двенадцать, квадратиков – пять, следовательно, общая площадь будет равняться шестидесяти квадратикам. Правильно?

– Мм…да.

– Слушай дальше. Шестьдесят – замечательное круглое число, которое можно составить несколькими способами. Самый легкий – умножить десять на шесть. Такую площадь имеет эта коробочка: по горизонтали в ней умещается десять квадратиков, а по вертикали – шесть. Стало быть, в ней должны уместиться все двенадцать фигур. Просто, как составная картинка-загадка.

Дункан ожидал подвоха. Бабушка обожала словесные и математические парадоксы, и далеко не все они были понятии ее десятилетней жертве. Но на сей раз обошлось без парадоксов. Дно коробки было расчерчено на шестьдесят квадратиков, значит… Стоп! Площадь площадью, но ведь фигуры имеют разные очертания. Попробуй-ка загони их в коробку!

– Оставляю тебе эту задачу для самостоятельного решения,– объявила бабушка, видя, как он уныло двигает пентамино по дну коробки.– Поверь мне, их можно собрать.

Вскоре Дункан начал крепко сомневаться в бабушкиных словах. Ему с легкостью удавалось уложить в коробку десять фигур, а один раз он ухитрился втиснуть и одиннадцатую. Но очертания незаполненного пространства не совпадали с очертаниями двенадцатой фигуры, которую мальчик вертел в руках. Там был крест, а оставшаяся фигура напоминала букву Z…

Еще через полчаса Дункан уже находился на грани отчаяния. Бабушка погрузилась в диалог со своим компьютером, но время от времени заинтересованно поглядывала на него, словно говоря: «Это не так легко, как ты думал».

В свои десять лет Дункан отличался заметным упрямством. Большинство его сверстников давным-давно оставили бы всякие попытки. (Только через несколько лет он понял, что бабушка изящно проводила с ним психологический тест.) Дункан продержался без посторонней помощи почти сорок минут…

Тогда бабушка встала от компьютера и склонилась над головоломкой. Ее пальцы передвинули фигуры U, X и L…

Дно коробки оказалось целиком заполненным! Все куски головоломки заняли нужные места.

– Конечно, ты заранее знала ответ! – обиженно протянул Дункан.

– Ответ? – переспросила бабушка.– А как ты думаешь, сколькими способами можно уложить пентамино в эту коробку?

Вот она, ловушка. Дункан провозился почти час, так и не найдя решения, хотя за это время он перепробовал не меньше сотни вариантов. Он думал, что существует всего один способ. А их может быть… двенадцать? Или больше?

– Так сколько, по-твоему, может быть способов? – снова спросила бабушка.

– Двадцать,– выпалил Дункан, думая, что уж теперь бабушка не будет возражать.

– Попробуй снова.

Дункан почуял опасность. Забава оказалась куда хитрее, чем он думал, и мальчик благоразумно решил не рисковать.

– Вообще-то, я не знаю,– сказал он, мотая головой.

– А ты восприимчивый мальчик,– снова улыбнулась бабушка.– Интуиция – опасный проводник, но порою другого у нас нет. Могу тебя обрадовать: угадать правильный ответ здесь невозможно. Существует более двух тысяч различных способов укладки пентамино в эту коробку. Точнее, две тысячи триста тридцать девять. И что ты на это скажешь?

Вряд ли бабушка его обманывала. Но Дункан был настолько раздавлен своей неспособностью найти решение, что не удержался и выпалил:

– Не верю!

Элен редко выказывала раздражение. Когда Дункан чем-то обижал ее, она просто становилась холодной и отрешенной. Однако сейчас бабушка лишь усмехнулась и что-то выстучала на клавиатуре компьютера.

– Взгляни сюда,– предложила она.

На экране появился набор из двенадцати разноцветных пентамино, заполняющих прямоугольник размером десять на шесть. Через несколько секунд его сменило другое изображение, где фигуры, скорее всего, располагались уже по-другому (точно сказать Дункан не мог, поскольку не запомнил первую комбинацию). Вскоре изображение опять поменялось, потом еще и еще… Так продолжалось, пока бабушка не остановила программу.

– Даже при большой скорости компьютеру понадобится пять часов, чтобы перебрать все способы,– пояснила бабушка.– Можешь поверить мне на слово: все они разные. Если бы не компьютеры, сомневаюсь, что люди нашли бы все способы обычным перебором вариантов.

Дункан долго глядел на двенадцать обманчиво простых фигур. Он медленно переваривал бабушкины слова. Это было первое в его жизни математическое откровение. То, что он так опрометчиво посчитал обыкновенной детской игрой, вдруг стало разворачивать перед ним бесконечные тропинки и горизонты, хотя даже самый одаренный десятилетний ребенок вряд ли сумел бы ощутить безграничность этой вселенной.

Но тогда восторг и благоговение Дункана были пассивными. Настоящий взрыв интеллектуального наслаждения случился позже, когда он самостоятельно отыскал свой первый способ укладки пентамино. Несколько недель Дункан везде таскал с собой пластмассовую коробочку. Все свободное время он тратил только на пентамино. Фигуры превратитесь в личных друзей Дункана. Он называл их по буквам, которые те напоминали, хотя в ряде случае сходство было более чем отдаленным. Пять фигур – F, I, L, Р, N шли вразнобой, зaто остальные семь повторяли последовательность латинского алфавита: Т, U, V, W, X, Y, Z.

Однажды, в состоянии не то геометрического транса, не то геометрического экстаза, который больше не повторялся, Дункан менее чем за час нашел пять вариантов укладки. Возможно, даже Ньютон, Эйнштейн или Чэнь-цзы в свои моменты истины не ощущали большего родства с богами математики, чем Дункан Макензи.

Вскоре он сообразил, причем сам, без бабушкиных подсказок, что пентамино можно уложить в прямоугольник с другими размерами сторон. Довольно легко Дункан нашел несколько вариантов для прямоугольников 5 на 12 и 4 на 15. Затем он целую неделю мучился, пытаясь загнать двенадцать фигур в более длинный и узкий прямоугольник 3 на 20. Снова и снова он начинал заполнять коварное пространство и… получат дыры в прямоугольнике и «лишние» фигуры.

Сокрушенный, Дункан наведался к бабушке, где его ждал новый сюрприз.

– Я рада твоим опытам,– сказала Элен.– Ты исследовал все возможности, пытаясь вывести общую закономерность. Так всегда поступают математики. Но ты ошибаешься: решения для прямоугольника три на двадцать все-таки существуют. Их всего два, и если ты найдешь одно, то сумеешь отыскать и второе.

Окрыленный бабушкиной похвалой, Дункан с новыми силами продолжил «охоту на пентамино». Еще через неделю он начал понимать, какой непосильный груз взвалил на свои плечи. Количество способов, которым можно расположить двенадцать фигур, просто ошеломляло Дункана. Более того, ведь каждая фигура имела четыре положения!

И вновь он явился к бабушке, выложив ей все свои затруднения. Если для прямоугольника 3 на 20 существовало только два варианта, сколько же времени понадобится, чтобы их найти?

– Изволь, я тебе отвечу,– сказала бабушка.– Если бы ты действовал как безмозглый компьютер, занимаясь простым перебором комбинаций и тратя на каждую по одной секунде, тебе понадобилось бы…– Здесь она намеренно сделала паузу.– Тебе понадобилось бы более шести миллионов… да, более шести миллионов лет.

Земных или титанских? Этот вопрос мгновенно возник в мозгу Дункана. Впрочем, какая разница?

– Но ты отличаешься от безмозглого компьютера,– продолжала бабушка.– Ты сразу видишь заведомо непригодные комбинации, и потому тебе не надо тратить время на их проверку. Попробуй еще раз.

Дункан повиновался, уже без энтузиазма и веры в успех. А потом ему в голову пришла блестящая идея.

Карл сразу же заинтересовался пентамино и принял вызов. Он взял у Дункана коробочку с фигурами и исчез на несколько часов.

Когда Карл позвонил ему, вид у друга был несколько расстроенный.

– А ты уверен, что эта задача действительно имеет решение? – спросил он.

– Абсолютно уверен. Их целых два. Неужели ты так и не нашел хотя бы одно? Я-то думал, ты здорово соображаешь в математике.

– Представь себе, соображаю, потому и знаю, каких трудов стоит твоя задачка. Нужно проверить… миллион миллиардов возможных комбинаций.

– А откуда ты узнал, что их столько? – спросил Дункан, довольный тем, что хоть чем-то сумел заставить друга растерянно чесать в затылке.

Карл скосил глаза на лист бумаги, заполненный какими-то схемами и цифрами.

– Если исключить недопустимые комбинации и учесть симметрию и возможность поворота… получается факториал… суммарное число перестановок… ты все равно не поймешь. Я тебе лучше покажу само число.

Он поднес к камере другой лист, на котором была крупно изображена внушительная вереница цифр:

1 004 539 160 000 000.

Дункан ничего не смыслил в факториалах, однако в точности подсчетов Карла не сомневался. Длиннющее число ему очень понравилось.

– Так ты собрался бросить эту задачу? – осторожно спросил Дункан.

– Еще чего! Я просто хотел тебе показать, насколько она трудна.

Лицо Карла выражало мрачную решимость. Произнеся эти слова, он отключился.

На следующий день Дункана ожидало одно из величайших потрясений в его мальчишеской жизни. С экрана на него смотрело осунувшееся, с воспаленными глазами, лицо Карла. Чувствовалось, он провел бессонную ночь.

– Ну вот и все,– усталым, но торжествующим голосом возвестил он.

Дункан едва верил своим глазам. Ему казалось, что шансы на успех ничтожно малы. Он даже убедил себя в этом. И вдруг… Перед ним лежал прямоугольник три на двадцать, заполненный всеми двенадцатью фигурами пентамино.

Потом Карл поменял местами и перевернул фигуры на концах, оставив центральную часть нетронутой. От усталости у него слегка дрожали пальцы.

– Это второе решение,– пояснил он.– А теперь я отправляюсь спать. Так что спокойной ночи или доброго утра – это уж как тебе угодно.

Посрамленный Дункан еще долго глядел в погасший экран. Он не знал, какими путями двигался Карл, нащупывая решение головоломки. Но он знал, что его друг вышел победителем. Наперекор всему.

Он не завидовал победе друга. Дункан слишком любил Карла и всегда радовался его успехам, хотя нередко сам оказывался побежденной стороной. Но в сегодняшнем триумфе друга было что-то иное, что-то почти магическое.

Дункан впервые увидел, какой силой обладает интуиция. Он столкнулся с загадочной способностью разума вырываться за пределы фактов и отбрасывать в сторону мешающую логику. За считаные часы Карл выполнил колоссальную работу, превзойдя самый быстродействующий компьютер.

Впоследствии Дункан узнал, что подобными способностями обладают все люди, но используют они их крайне редко – возможно, один раз в жизни. У Карла этот дар получил исключительное развитие… С того момента Дункан стал серьезно относиться к рассуждениям друга, даже самым нелепым и возмутительным с точки зрения здравого смысла.

Это было двадцать лет назад. Дункан не помнил, куда делись пластмассовые фигуры пентамино. Возможно, так и остались у Карла.

Бабушкин подарок стал их новым воплощением, теперь уже в виде кусочков разноцветного камня. Удивительный, нежно-розового оттенка гранит был с холмов Галилея, обсидиан – с плато Гюйгенса, а псевдомрамор – с гряды Гершеля. И среди них… сначала Дункан подумал, что ошибся. Нет, так оно и есть: то был самый редкий и загадочный минерал Титана. Крест каменного пентамино бабушка сделала из титанита. Этот иссиня-черный, с золотистыми вкраплениями минерал не спутаешь ни с чем. Таких крупных кусков Дункан еще не видел и мог только догадываться, какова его стоимость.

– Не знаю, что и сказать,– пробормотал он.– Какая красота. Такое я вижу в первый раз.

Он обнял худенькие бабушкины плечи и вдруг почувствовал, что они дрожат и ей никак не унять эту дрожь. Дункан бережно держал ее в своих объятиях, пока плечи не перестали дрожать. В такие мгновения слова не нужны. Отчетливее, чем прежде, Дункан понимал: он последняя любовь в опустошенной жизни Элен Макензи. И теперь он улетает, оставляя ее наедине с воспоминаниями.

БОЛЬШИЕ МАГИЧЕСКИЕ КВАДРАТЫ

Китайский математик XIII века Ян Хуэй был знаком с треугольником Паскаля (арифметическим треугольником). Он оставил изложение методов решения уравнений 4-й и высших степеней, встречаются правила решения полного квадратного уравнения, суммирования прогрессий, приемы построения магических квадратов. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37).

Бенджамин Франклин составил квадрат 16×16, который помимо наличия постоянной суммы 2056 во всех строках, столбцах и диагоналях имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4×4 и уложить этот лист на большой квадрат так, чтобы 16 клеток большего квадрата попали в эту прорезь, то сумма чисел, появившихся в этой прорези, куда бы мы ее не положили, будет одна и та же – 2056.

Самым ценным в этом квадрате является то, что его довольно просто превратить в идеальный магический квадрат, в то время как построение идеальных магических квадратов – нелегкая задача. Франклин называл этот квадрат "самым очаровательным волшебством из всех магических квадратов, когда-либо сотворенных чародеями".

МАГИЧЕСКИЙ КВАДРАТ ДЮРЕРА

Магический квадрат, воспроизведённый немецким художником Альбрехтом Дюрером на гравюре “Меланхолия”, известен всем исследователям магических квадратов.

Здесь подробно рассказывается об этом квадрате. Сначала покажу гравюру “Меланхолия” (рис. 1) и магический квадрат, который изображён на ней (рис. 2).

Рис. 1

Рис. 2

Теперь покажу этот квадрат в привычном виде (рис. 3):

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

Рис. 3

Интересно, что два средних числа в последней строке квадрата (они выделены) составляют год создания гравюры – 1514.

Считают, что этот квадрат, так очаровавший Альбрехта Дюрера, пришёл в Западную Европу из Индии в начале XVI века. В Индии этот квадрат был известен в I веке нашей эры. Предполагают, что магические квадраты были придуманы китайцами, так как самое раннее упоминание о них встречается в китайской рукописи, написанной за 4000-5000 лет до нашей эры. Вот какой древний возраст у магических квадратов!

Рассмотрим теперь все свойства этого удивительного квадрата. Но делать это мы будем на другом квадрате, в группу которого входит квадрат Дюрера. Это означает, что квадрат Дюрера получается из того квадрата, который мы будем сейчас рассматривать, одним из семи основных преобразований магических квадратов, а именно поворотом на 180 градусов. Все 8 квадратов, образующих данную группу, обладают свойствами, которые будут сейчас перечислены, только в свойстве 8 для некоторых квадратов слово “строка” заменится на слово “столбец” и наоборот.

Основной квадрат данной группы вы видите на рис. 4.

1

14

15

4

12

7

6

9

8

11

10

5

13

2

3

16

Рис. 4

Теперь перечислим все свойства этого знаменитого квадрата.

Свойство 1 . Этот квадрат ассоциативен, то есть любая пара чисел, симметрично расположенных относительно центра квадрата, даёт в сумме 17=1+ n 2 .

Свойство 2. Сумма чисел, расположенных в угловых ячейках квадрата, равна магической константе квадрата – 34.

Свойство 3. Сумма чисел в каждом угловом квадрате 2х2, а также в центральном квадрате 2х2 равна магической константе квадрата.

Свойство 4. Магической константе квадрата равна сумма чисел на противоположных сторонах двух центральных прямоугольников 2х4, а именно: 14+15+2+3=34, 12+8+9+5=34.

Свойство 5. Магической константе квадрата равна сумма чисел в ячейках, отмечаемых ходом шахматного коня, а именно: 1+6+16+11=34, 14+9+3+8, 15+5+2+12=34 и 4+10+13+7=34.

Свойство 6. Магической константе квадрата равна сумма чисел в соответствующих диагоналях угловых квадратов 2х2, примыкающих к противоположным вершинам квадрата. Например, в угловых квадратах 2х2, которые выделены на рис. 4, сумма чисел в первой паре соответствующих диагоналей: 1+7+10+16=34 (это и понятно, так как эти числа расположены на главной диагонали самого квадрата). Сумма чисел в другой паре соответствующих диагоналей: 14+12+5+3=34.

Свойство 7. Магической константе квадрата равна сумма чисел в ячейках, отмечаемых ходом, подобным ходу шахматного коня, но с удлинённой буквой Г. Показываю эти числа: 1+9+8+16=34, 4+12+5+13=34, 1+2+15+16=34,4+3+14+13=34.

Свойство 8. В каждой строке квадрата есть пара рядом стоящих чисел, сумма которых равна 15, и ещё пара тоже радом стоящих чисел, сумма которых равна 19. В каждом столбце квадрата есть пара рядом стоящих чисел, сумма которых равна 13, и ещё пара тоже рядом стоящих чисел, сумма которых равна 21.

Свойство 9. Суммы квадратов чисел в двух крайних строках равны между собой. То же можно сказать о суммах квадратов чисел в двух средних строках. Смотрите:

1 2 + 14 2 + 15 2 + 4 2 = 13 2 + 2 2 + 3 2 + 16 2 = 438

12 2 + 7 2 + 6 2 + 9 2 = 8 2 + 11 2 + 10 2 + 5 2 = 310

Аналогичным свойством обладают числа в столбцах квадрата.

Свойство 10. Если в рассматриваемый квадрат вписать квадрат с вершинами в серединах сторон (рис. 5), то:

а) сумма чисел, расположенных вдоль одной пары противоположных сторон вписанного квадрата, равна сумме чисел, расположенных вдоль другой пары противоположных сторон, и каждая из этих сумм равна магической константе квадрата;

б) равны между собой суммы квадратов и суммы кубов указанных чисел:

12 2 + 14 2 + 3 2 + 5 2 = 15 2 + 9 2 + 8 2 + 2 2 = 374

12 3 + 14 3 + 3 3 + 5 3 = 15 3 + 9 3 + 8 3 + 2 3 = 4624

Рис. 5

Вот такими свойствами обладает магический квадрат с рис. 4.

Следует отметить, что в ассоциативном квадрате, каковым является рассматриваемый квадрат, можно выполнять ещё такие преобразования, как перестановка симметричных строк и/или столбцов. Например, на рис. 6 изображён квадрат, полученный из квадрата с рис. 4 перестановкой двух средних столбцов.